On the mechanism for edge localized mode mitigation by supersonic molecular beam injection

نویسندگان

  • T. Rhee
  • J. M. Kwon
  • P. H. Diamond
  • W. W. Xiao
چکیده

We construct a diffusive, bi-stable cellular automata model to elucidate the physical mechanisms underlying observed edge localized mode (ELM) mitigation by supersonic molecular beam injection (SMBI). The extended cellular automata model reproduces key qualitative features of ELM mitigation experiments, most significantly the increase in frequency of grain ejection events (ELMs), and the decrease in the number of grains ejected by these transport events. The basic mechanism of mitigation is the triggering of small scale pedestal avalanches by additional grain injection directly into the H-mode pedestal. The small scale avalanches prevent the gradient from building-up to marginality throughout the pedestal, thus avoiding large scale transport events which span the full extent of that region. We explore different grain injection parameters to find an optimal SMBI scenario. We show that shallow SMBI deposition is sufficient for ELM mitigation. VC 2012 American Institute of Physics. [doi:10.1063/1.3685720]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport coefficients of a chemically reacting plasma

Related Articles Ring-shaped velocity distribution functions in energy-dispersed structures formed at the boundaries of a proton stream injected into a transverse magnetic field: Test-kinetic results Phys. Plasmas 19, 022903 (2012) Dust charging processes in the nonequilibrium dusty plasma with nonextensive power-law distribution Phys. Plasmas 19, 023704 (2012) Modification of anisotropic plasm...

متن کامل

ELM Mitigation by Supersonic Molecular Beam Injection into the H-mode Pedestal in HL-2A Tokamak

Density profiles in pedestal region (H-mode) are measured in HL-2A and the characteristics of the density pedestal are described. Cold particle deposition by Supersonic Molecular Beam Injection (SMBI) within the pedestal is verified. ELM mitigation by SMBI into the H-mode pedestal is demonstrated and the relevant physics is elucidated. The sensitivity of the effect to SMBI pressure and duration...

متن کامل

ELM mitigation by supersonic molecular beam injection: KSTAR and HL-2A experiments and theory

We report recent experimental results from HL-2A and KSTAR on ELM mitigation by supersonic molecular beam injection (SMBI). Cold particle deposition within the pedestal by SMBI is verified in both machines. The signatures of ELM mitigation by SMBI are an ELM frequency increase and ELM amplitude decrease. These persist for an SMBI influence time τI. Here, τI is the time for the SMBI influenced p...

متن کامل

HIGH RESOLUTION LASER SPECTROSCOPY IN COLD SUPERSONIC MOLECULAR BEAMS COOLING, REDUCTION OF DOPPLER WIDTH AND APPLICATION

The cooling of molecules during the adiabatic expansion of supersonic seeded molecular beams is reviewed and illustrated by the example of NO -molecules. The reduction of the Doppler width by collimation of the beam and the cooling to low rotational temperatures brings a significant simplification of the complex NO -absorption spectrum and allows its assignment. The measured rotational tem...

متن کامل

Design and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory

This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012